Review of Spronck et al.2013: Fiber Scrambling for High-Resolution Spectrograph etc.

[Speaker 1]
Haruka Babab
M1, SOKENDAI, Mitaka(supervisor : Wako Aoki)
Review of Spronck et al.2013: Fiber Scrambling for High-Resolution Spectrograph
One of the goals of studying exoplanets is to find “second-Earth”. The Kepler space telescope has found more than 3000 exoplanets candidates including several times Earth-mass planets, but they are too far form our solar system to observe more further. Detection of such planets around G-type stars is very difficult because of the accuracy, so detection around M-type stars which exist a lot in neighborhood has been planned. In order to find such planets in the Habitable Zones near our solar system, infrared high-resolution spectrographs have been developed by some groups, because M-type stars are bright in the infrared wavelength region. IRD -Infrared Doppler- is one of such spectrographs, developed for Subaru telescope. IRD uses optical fibers to couple the telescope to spectrograph. This paper, Spronck et al.2013, demonstrated an improvement in the stability of the instrumental profile using the fiber scrambler. Additionally, they presented data obtained with a double scrambler that further improves the stability of the instrument

[Speaker 2]
Akimasa Kataoka
D2, SOKENDAI, Mitaka(supervisor : Kohji Tomisaka)
Planetesimal formation via fluffy aggregates
To understand the structure evolution of dust aggregates is a key in the planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they become fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals (Okuzumi et al. 2012, ApJ, 752, 106). Thus, some other compression mechanisms are required to form planetesimals.
We investigate the static compression of highly porous aggregates. First, we derive the compressive strength by numerical N-body simulations (Kataoka et al. 2013a, A&A, 554, A4). Then, we apply the strength to protoplanetary disks, supposing that the highly porous aggregates can be quiasi-statically compressed by ram pressure of the disk gas and the self gravity. As a result, we find the pathway of the dust structure evolution from dust grains via fluffy aggregates to compact planetesimals. Moreover, we find that the fluffy aggregates overcome the barriers in planetesimal formation, which are radial drift, fragmentation, and bouncing barriers (Kataoka et al. 2013b, A&A, 557, L4).