Surveys for Lyman Alpha Blobs at z=2 and 3 / Infrared Linear and Circular Polarimetry of the NGC 6334 Star Forming Region

[Speaker 1]
Takatoshi Shibuya
[Title]
Surveys for Lyman Alpha Blobs at z=2 and 3
[Abstract]
LyA blobs (LABs) are mysterious extended sources at z ~ 2-6. Because LABs are thought to closely relate to the formation of / the feedback from massive galaxies, investigating the origin of their brightness and spatial extent is quite important. However, despite intensive observational and theoretical approaches, the formation mechanisms of LABs have been poorly constrained. In order to understand their hidden total energy budget and relationship with other galaxy populations, such as compact Lyman Alpha Emitters (LAEs) or massive Sub-Millimeter Galaxies (SMGs) selected by using various wavebands, surveys for LABs in well-observed fields in multi-wavelengths are crucially required.
For this purpose, we have undertaken narrow-band imaging surveys in 2 MUSYC fields, the Extended Chandra Deep Field-South and the Extended Hubble Deep field-South, for LABs at z=2.1 and 3.1. In this presentation, I will provide our preliminary results.
————————————————————
————————————————————
[Speaker 2]
Jungmi Kwon
[Title]
Infrared Linear and Circular Polarimetry of the NGC 6334 Star Forming Region
[Abstract]
Magnetic fields have been thought to play a crucial role in regulating accretion onto protostars, both in powering and shaping outflows and removing angular momentum from disk material, to allow the protostar to gain mass. However, the precise role of the magnetic field is poorly understood and evidence for its shape and structure has not been forthcoming. Getting evidence for the morphology of these fields has been tricky though – and this is an area in which polarimetry can help. In particular, circular polarization can provide evidence for changing grain/field alignment directions along the line-of-sight and hence the presence of twisting fields. However, the observational database of circular polarimetry in star forming regions is still very small. In this presentation, we present deep linear and circular polarization images of the NGC 6334 massive star-formation complex observed in the near-infrared bands.