2023.1.16-2023.1.22


Jan. 17 Tue   10:00-11:30  太陽系小天体セミナー      Zoom


Jan. 18 Wed   10:00-12:00  SOKENDAI Colloquium        Zoom


Jan. 18 Wed   15:30-17:00  NAOJ Science Colloquium      Zoom


Jan. 20 Fri  16:00-17:00  NAOJ Seminar      Zoom/Large Seminar Room(hybrid)


詳細は下記からご覧ください。

=============== Jan 17 Tue ===============
キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:1月17日(火曜日)10時00分~11時30分
場所:zoom
講演者:秋澤宏樹

世話人の連絡先
 名前:渡部潤一
備考:テレビ会議またはスカイプによる参加も可

=============== Jan 18 Wed ===============
Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:January 18, 2023 10:00-12:00
Place:Zoom

Speaker : Yuta Tashima
Affiliation: SOKENDAI 4th year (D2) (Supervisor: Mami Machida, Fumitaka Nakamura, Tomoya Takiwaki)
Title: Elucidation of galactic magnetic field structure by pseudo-observation using N-body simulation

Speaker: Yoshiaki Sato
Affiliation: SOKENDAI 1st year (M1) (Supervisor: Noriyuki Narukage, Takashi Sekii, Masumi Shimojo)
Title: Study of High-Energy Phenomena in the Solar Corona Tackled with X-ray Imaging-Spectroscopy

Speaker: Yoshihiro Naito
Affiliation: SOKENDAI 1st year (M1) (Supervisor: Hirohisa Hara, Ryoko Ishikawa, Joten Okamoto)
Title: Spectroscopic study of the source region for fast Solar Wind acceleration in CH

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== Jan 18 Wed ===============
Campus:Mitaka
Seminar:NAOJ Science Colloquium
Regularly Scheduled/Sporadic:Every Wednesday
Date and time:2023 January 18, 15:30-17:00
Place:zoom

Speaker:Kousuke Ishihara
Affiliation:NAOJ (D1)
Title:Observational research of fragmentation process in nearby star-forming regions
Abstract:In the star formation process, molecular clouds hierarchically form dense structures by collapsing and fragmentation, then eventually leading to protostars. The scale at which fragmentation occurs is considered to contribute to the formation of stellar systems such as clusters and multiples. The most basic case is thermal Jeans fragmentation, which is determined by the balance between self-gravity and the pressure gradient due to thermal motion, and the expected characteristic fragmentation scale is called thermal Jeans length. Comparing with the core separation distribution and Jeans length provides a clue to the fragmentation process from clumps to cores. We have analyzed ALMA data (spatial resolution: ∼ 1000 au at 3 kpc) for 30 high-mass star-forming regions. As a result, we found a characteristic peak at ∼ 6000 au, which is comparable to the Jeans length. We have also confirmed that the result is robust even if considering observational biases due to differences in spatial resolution and mass sensitivity. In this talk, I introduce preliminary results of a similar analysis applied to dense cores in nearby star-forming regions. I obtained separation distribution by applying a Minimum Spanning Tree to the core coordinates in core catalogs obtained from the Herschel Gould Belt Survey. The results show a variety of distribution shapes with peaks at >10000 au in each region. The peak separation was found to be about 0.1 times the Jeans length in all regions. This may indicate that dynamical processes such as cloud-scale gravitational instability are important in the core formation process.

Speaker:Masato Sato
Affiliation:NAOJ (D1)
Title:Light curves of electron capture and low mass Fe core collapse supernovae
Abstract:Stars with M<8Msun become white dwarfs in their last moment. Stars with M>10Msun evolve to Red Super Giant (RSG) or Wolf-Rayet and explode as Fe core collapse supernovae (FeCCSNe). The last moment of the M~8-10Msun is a one of the last unknown pieces of stellar evolution understanding. They make O, Ne, and Mg core at their center in the later phase of evolution. They are theoretically predicted to evolve to Super Asymptotic Giant Branch (SAGB) and finally become white dwarfs or explode as electron capture supernovae (ECSNe). However, mass range to become SAGB is not accurately estimated. Moreover, there are no supernovae which clearly identified as electron capture origin so far. SN2018zd were observed and proposed as an ECSN recently (Hiramatsu et al. 2021). However, it is also proposed as a FeCCSN (Callis et al. 2022) and common understanding is not obtained so far. Therefore, the clear identification of ECSN-like supernovae like SN2018zd is highly required. Although Kozyreva et al. (2021) revealed the bluer plateau for ECSN than FeCCSN, they didn’t include circumstellar material (CSM) interaction. However, recent observations and studies revealed that most of the supernovae have CSM before explosion. Therefore, the realistic characteristics of the ECSN light curves and the distinguishing method of it aren’t revealed.
We conducted numerical calculation of the light curves of low-mass FeCCSN and ECSN using multi-dimensional radiation hydrodynamical code STELLA (Blinnikov et al. 2000). RSG and SAGB progenitor models are taken from Sukhbold et al. (2016) and Tominaga et al. (2013) respectively. We include the CSM interaction into calculation using the method of Moriya et al. (2018).
We investigated the characteristics of the ECSN light curves comparing to low-mass FeCCSN. As a result, the bluer plateau for ECSN than FeCCSN is confirmed if CSM is not included and even if they are bolometrically degenerated. Moreover, as a preliminary result, the redder and fainter delayed shockbreakout is shown for ECSN than FeCCSN if CSM with high mass loss rate(~1e-2Msun/yr) is included. With low mass loss rate(~1e-4-6Msun/yr), bluer plateau for ECSN still can be seen. In the talk, we will introduce the progenitor models and resulting light curves in the talk.

Facilitator
-Name:Akimasa Kataoka

=============== Jan 20 Fri ===============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:2023 January 20, 16:00-17:00
Place: Zoom/Large Seminar Room(hybrid)
Speaker:関口 和寬/Kazuhiro Sekiguchi
Affiliation:NAOJ
Title:考古天文学シミュレーションソフトウエア”arcAstro-VR” の開発
Abstract:考古学遺構の位置や方位には、天文現象との間に何らかの関係を示唆されるものが多く存在する。これらを実証的に調べ、古代の人々が天体をどのように捉えていたかを分析することにより、それらの遺構を建てた人々の空間的認識について理解を深めることが出来ると考えられる。しかし、今日我々がその場で見る天体の位置や地上の景観と古代の人々が見た景観は同じでは無い。地球の歳差運動のため、見かけの星々の赤緯は数十年から数世紀のタイムスケールで移動する。また、太陽、月、惑星の上昇位置と沈下位置も、黄道傾斜角が時間とともにゆっくりと変化するため、わずかに変化する。
さらに考古天文学調査では、日の出/日の入り、月の出/月の入り、惑星と星の位置、星々の空間パターン、または至点などの特定の日付での光と影の相互作用等と、人工または自然の構造物の方位角を評価する。このような関係を数か月または数年にわたって観察することは困難であり、遺構その物の保存状態も良いとは限らない。そこで、興味ある遺構を実測や記録から再構築し、過去の天体現象のシミュレーションに応じた効果を仮想3D空間として体験できるコンピューターシステムの開発が望まれる。
我々は、考古遺構を実測や記録から再構築し、過去の天体現象のシミュレーションに応じた効果を仮想3D空間として体験できるコンピューターシステム、arcAstro-VRの開発を行っている。arcAstro-VRは、高い精度で過去の星空を再現することが可能なオープンソースのデスクトッププラネタリウムソフトウェアパッケージであるStellariumをベースとして、LiDARやPhotogrammetryにより測量した構造物のデータを3D化して背景となる地形と天体のデータと合わせて可視化することが出来る。また、VR空間の中を自由に移動したり、設定を変更することで考古遺構と背景の天体現象との関係についてさまざまな検証が行える。
最新のバージョン(Ver0.17.3、2022年12月15日現在)は、Meta Quest(Oculus Quest)に対応してMetaLinkでPCと接続することにより、 HMDを通してVR空間を体験できる。また、補助線の始点となるマーカーを中心としたコンパスマップ表示機能や、魚眼レンズでドームに360度投影が可能なドームマスター出力、等が追加された。arcAstro-VRはオープンソースとして、GNU General Public License バージョン 3 の条件に基づいてライセンス供与されており、Windows(Wondows 8以上)および macOS (MacOS 10.14以上)で利用できる。 (詳しくはhttps://arcastrovr.org/ja/を参照)。
今談話会では、arcAstro-VRを使った例として、佐賀県にある吉野ヶ里遺跡の仮想再現モデルを紹介する。

Facilitator
-Name:Aoki, Wako

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です