2024.1.15-2024.1.21

January 16 Tue 10:00-11:30 太陽系小天体セミナー
Zoom


January 17 Wed 10:30-12:00 SOKENDAI Colloquium
Large Seminar Room in Subaru Building and Zoom (hybrid)


January 17 Wed 14:30-15:30 ALMA-J seminar
Room 102 in the ALMA Building and Zoom (hybrid)


January 17 Wed 15:30-16:30 NAOJ Science Colloquium
Zoom


January 18 Thu 10:00-12:00 SOKENDAI Doctoral Thesis Dissertation review
Lecture Room and Zoom (hybrid)


January 18 Thu 15:30-17:30 SOKENDAI Doctoral Thesis Dissertation review
Lecture Room and Zoom (hybrid)


January 19 Fri 10:30-12:00 Solar and Space Plasma Seminar
Central Building (North) / 310 and Zoom (hybrid)


詳細は下記からご覧ください。

=============== January 16 Tue ===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:1月16日(火曜日)10時00分~11時30分
場所:zoom
講演者:宇田豊和
所属:Aiharasoft
タイトル:ハワイ・マウナケア星空ライブからの流星自動検出システム概要
Abstract:ハワイ・マウナケア星空ライブからの流れ星自動検出システムを構築しました。
2022年1月より、大きな流れ星を検出すると、Xでポストする運用を行っています。
今回の発表では、このシステムの概要、流れ星の検出アルゴリズム概要、
ふたご座流星群などの検出状況、現状の問題点、課題についてご説明します。

世話人の連絡先
 名前:渡部潤一
 
備考:テレビ会議またはスカイプによる参加も可

=============== January 17 Wed ===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:January 17, 2024 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker: Kazuki Watanabe
Affiliation: SOKENDAI 1st year (M1) (Supervisor: Yoshinori Uzawa, Takafumi Kojima, Tai Oshima)
Title: Development of a sub-THz MKID Camera for Deep Space Observation

Speaker: Miho Tan
Affiliation: SOKENDAI 1st year (M1) (Supervisor: Mami Machida, Tomoya Takiwaki, Kazunari Iwasaki)
Title: Effect of an optical star wind on SS433’s jet propagation

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== January 17 Wed===============

Campus: Mitaka
Seminar: ALMA-J seminar
Date and time: January 17 (Wed) 14:30-15:30
Place: hybrid (Room 102 in the ALMA building and Zoom)

1st speaker: Yuzuki Nagashima
Affiliation: Fukushima university / NAOJ
Title: High-precision SFR mapping of the nearby galaxy NGC 1068 using ALMA 100 GHz continuum and HST Paα line and the effect of DIG contamination.

Abstract:
The star formation rate (SFR) is an important indicator in the context of galaxy evolution. However, it is not easy to accurately measure the SFR in external galaxies. For example, the most common method is to use radiation from the HII region, but the to assume temperature of the HII region and the contribution of other radiation sources make it difficult to accurately estimate the SFR. Furthermore, in the infrared and optical wavelength bands, the effect of dust extinction is significant and needs to be corrected. Therefore, it is important to observe in the millimeter and sub-millimeter wavelength bands with ALMA, which are not affected to dust extinction, especially, which has high sensitivity and high resolution. In recent years, with the improvement of data accuracy, a method to isolate, identify, and extract whether the source of ionized gas is from star formation or not is being established. By identifying and subtracting stronger ionization sources (e.g., AGN origin) and weaker (Diffuse Ionized Gas; DIG origin) than star formation sources, SFRs that are less contradiction with SFRs derived from multiple tracers have been reported (e.g., Michiyama et al. 2020). Michiyama et al. 2020).
We produced a precise SFR map for the nearby galaxy NGC 1068 by comparing the two different ionized gas tracers, free-free emission and hydrogen recombination line the Paα, and by considering the effect of DIG.
In this talk, I will introduce how to make an accurate SFR map and the result.
In addition, I will focus on the DIG correction.

2nd speaker: Mahoshi Sawamura
Affiliation: University of Tokyo / NAOJ
Title: No galaxy-scale [CII] outflow detected in a z=6.72 red quasar with ALMA

Abstruct:
It has been claimed that active galactic nucleus (AGN)-driven massive outflows, which would happen during a transition phase from an obscured dusty quasar to a normal blue quasar, are the key physical process in driving the co-evolution of galaxies and supermassive black holes (SMBHs). Partially dust-obscured red quasars are thought to be the immediate phase of this transition. However, while many blue quasars at z = 6~7 have been found in recent years, it is still hard to identify red quasars at that epoch due to their apparent faintness. Deep, wide-area surveys and subsequent multi-wavelength follow-up observations are thus required to identify such red objects and test the above evolutionary scenario. Here we report our ALMA cycle 7 observations of the z = 6.72 red quasar HSC 120505.09−000027.9 (J1205−0000). This is one of the highest redshift (z > 6) red quasars originally identified by our deep Subaru Hyper Suprime-Cam (HSC) survey. It is apparently faint, but is intrinsically as luminous as −24.4 mag at rest-UV and hosts a massive BH of 2.2 × 10^9 Msun. It is also known to be N V and C IV BAL object, indicating the existence of nuclear outflows. We successfully detected both the [CII] 158 μm line and the underlying rest-FIR continuum emission (resolution ~0.6″, 1σ ~ 0.1 mJy/beam at dV = 75 km/s). The continuum is very bright, with the estimated luminosity of 2.3 × 10^12 Lsun (or equivalently SFR ~ 485 Msun/yr), which indicates that the host galaxy of this red quasar is indeed a starburst system. However, the detailed analysis of the visibility data suggests that the bulk of this IR emission originates from a spatially unresolved compact component, likely the AGN itself. Hence the actual SFR could be much smaller. Regarding the AGN feedback, our observations do not conclusively assert the presence of [CⅡ] outflows. One possible interpretation of this is that the spatial scale of the outflow is not large enough to reach the host galaxy. However, we propose that this red quasar is indeed in a key evolutionary phase of AGN feedback. We will also discuss possible future observations to explore the existence of this wing component.

=============== January 17 Wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Jan. 17 (Wed.), 15:30-16:30
Place: Zoom

Speaker: Bruce Gendre
Affiliation: Australian National University
Title: Progenitors of ultra-long gamma-ray bursts: an ultra-long and ultra-slow developing story
Abstract:
Gamma-ray bursts are fantastic explosions seen at cosmological distances, and one of the most extreme high energy events of the Universe. Because of their distance, understanding the phenomenon at play is challenging. In this seminar, I will review the GRB phenomenon, what we already know about the progenitor of those events, focusing on the most unknown kind of event, the ultra-long ones, and how we use the current technology for improving our knowledge.

Facilitator
-Name: Maria Giovanna Dainotti
Comment: English

=============== January 18 Thu==============

Campus:Mitaka
Seminar:SOKENDAI Doctoral Thesis Dissertation review
     総研大博士学位論文予備審査会
Regularly Scheduled/Sporadic:Sporadic
Date and time:January 18, 2024 10:00-12:00
Place :Lecture Room and Zoom

Speaker:Raiga Kashiwagi
Title:Instability and Evolution of Shocked Clouds Formed by Collisions between Filamentary Molecular Clouds

Facilitator
-Name:Nozomu Tominaga, Hideyuki Kobayashi, Kaya Kitabayashi (Graduate Student Affairs Unit)

Comment:
https://guas-astronomy.jp/CampusLife/doctor_report.html

=============== January 18 Thu==============

Campus:Mitaka
Seminar:SOKENDAI Doctoral Thesis Dissertation review
     総研大博士学位論文予備審査会
Regularly Scheduled/Sporadic:Sporadic
Date and time:January 18, 2024 15:30-17:30
Place :Lecture Room and Zoom

Speaker:Rikuto Omae
Title:Probing the Magnetic Fields of Distant Galaxies to Unravel the Evolution of Galactic Magnetic Fields

Facilitator
-Name:Nozomu Tominaga, Hideyuki Kobayashi, Kaya Kitabayashi (Graduate Student Affairs Unit)

Comment:
https://guas-astronomy.jp/CampusLife/doctor_report.html

=============== January 19 Fri==============

Campus: Mitaka
Seminar: Solar and Space Plasma Seminar
Regularly Scheduled/Sporadic: Sporadic
Date and time:19th January (Fri), 10:30-12:00
Place: hybrid; Central Building (North) / 310 and Zoom

Speaker:Dr. Ryoko Ishikawa
Affiliation:NAOJ
Title:3D mapping of the magnetic field in the whole atmosphere of an active region plage with the CLASP2.1 sounding rocket experiment
Abstract:Probing the magnetic field throughout the solar atmosphere is critically important for understanding the energy transfer from the photosphere to the corona. However, there is an overwhelming lack of empirical information on the magnetic field in the upper chromosphere and the layers above, where the magnetic pressure dominates the gas pressure (β < 1). To this end, a novel approach is to measure and model the polarization of magnetically-sensitive ultraviolet (UV) spectral lines. The series of sounding rocket experiments CLASP (2015), CLASP2 (2019) and CLASP2.1 (2021) have demonstrated that UV spectro-polarimetry is indeed a suitable diagnostic tool for investigating the magnetic fields in the whole solar chromosphere. On October 8, 2021, CLASP2.1 measured the Stokes profiles of the 280 nm spectral region at 16 consecutive slit positions covering a two-dimensional field of view in an active region plage. This near-UV spectral region contains the resonance lines of Mn I (which provide information on the lower chromosphere) and the Mg II h & k lines (which provide information on the middle and upper chromosphere). Combined with coordinated observations with the Solar Optical Telescope (SOT) aboard the Hinode satellite, we obtained a line-of-sight magnetogram covering a sunspot penumbra and a plage (moss) region at multiple heights from the photosphere to the top chromosphere. The 3D mapping enables how the magnetic patches expand with height and how much magnetic flux reaches higher in the chromosphere. The obtained magnetogram is compared with the high-resolution images recorded by IRIS and SDO/AIA, revealing the connectivity between the magnetic structure in the chromosphere and the coronal loops.

Facilitator
-Name:Akiko Tei

Comment:English

2023.12.11-2023.12.17

December 12 Tue 10:00-11:30 太陽系小天体セミナー
Zoom


December  13 Wed 10:30-12:00 SOKENDAI Colloquium
Large Seminar Room in Subaru Building and Zoom (hybrid)


December  13 Wed 15:30-16:30 NAOJ Science Colloquium
Large Seminar Room in Subaru Building and Zoom (hybrid)

詳細は下記からご覧ください。

=============== December  12 Tue ===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:12月12日(火曜日)10時00分~11時30分
場所:zoom
講演者:古荘玲子

世話人の連絡先
 名前:渡部潤一
 
備考:テレビ会議またはスカイプによる参加も可

=============== December  13 wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:December 13, 2023 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker: Shun Hatano
Affiliation: SOKENDAI 2nd year (M2) (Supervisor: Masami Ouchi, Yusei Koyama, Takashi Moriya)
Title: Supermassive black holes at high redshifts explored with James Webb Space Telescope

Speaker: Shun Ishigami
Affiliation: SOKENDAI 3rd year (D1) (Supervisor: Hirohisa Hara, Yukio Katsukawa, Masahito Kubo)
Title: Estimating the filling factor of coronal loops using EUV spectroscopic data

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== December  13 wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Dec. 13 (Wed.), 15:30-16:30
Place: the large seminar room / Zoom (hybrid)

Speaker: Kensuke Kakiuchi
Affiliation: The University of Tokyo
Title: MHD Simulation of The Inner Galaxy with Radiative Cooling and Heating
Abstract:
Magnetic field is supposed to play a key role in the interstellar gas of the Galactic Center region (inner Galactic Bulge region).
Observations show that the strength of the magnetic field within the central few hundred parsecs of the Galaxy is stronger than in the Galactic disk region, and its magnetic energy is comparable poor even surpasses the thermal and kinetic energy of the interstellar gas.
Therefore, it is essential to study the role of the magnetic field to understand the behavior of the interstellar gas in the Galactic center region.
In this talk, we will present the results of 3D global magnetohydrodynamical simulations in the Galactic center region. A notable distinction from previous simulations is the inclusion of radiative cooling and heating effects. We found the formation of a mid-latitude low-plasma beta zone (dominated by magnetic field pressure), which would not have appeared in the model without radiative heating and cooling. While the thermal energy of the interstellar gas is lost because of radiative heating and cooling effects, the magnetic energy is independent of this direct effect and can contribute to the thickness that supports the interstellar gas clouds above the Galactic plane.In fact, it is difficult to explain the thickness of gas clouds in the Galactic center using only gas pressure scale heights, suggesting that the contribution of the magnetic field is important as an interpretation of this thickness.

Facilitator
-Name: Doris Arzoumanian

Comment: English

2023.12.4-2023.12.10

December 5 Tue 10:00-11:30 太陽系小天体セミナー
Zoom


December  6 Wed 10:30-12:00 SOKENDAI Colloquium
Large Seminar Room in Subaru Building and Zoom (hybrid)


December  6 Wed 11:00-12:00 Tea Talk
Zoom


December  6 Wed 15:30-16:30 NAOJ Science Colloquium
Large Seminar Room in Subaru Building and Zoom (hybrid)


December  8 Fri 16:00-17:00 NAOJ Seminar
Large Seminar Room in Subaru Building and Zoom (hybrid)

詳細は下記からご覧ください。

=============== December  5 Tue ===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:12月5日(火曜日)10時00分~11時30分
場所:zoom
講演者:渡部潤一

世話人の連絡先
 名前:渡部潤一
 
備考:テレビ会議またはスカイプによる参加も可

=============== December  6 wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:December 6, 2023 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker: Abdurrahman Naufal
Affiliation: SOKENDAI 4th year (D2) (Supervisor: Yusei Koyama, Masayuki Tanaka, Yuichi Matsuda)
Title: Searching for quiescent galaxies in the Spiderweb protocluster with HST grism observation

Speaker: Takaho Masai
Affiliation: SOKENDAI 55h year (D3) (Supervisor: Alvaro Gonzalez, Yoshinori Uzawa, Takafumi Kojima)
Title: The Design of Frequency Independent Optics for (Sub)Millimeter Wave Multibeam Receivers

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== December  6 wed==============

キャンパス:三鷹 野辺山 水沢 岡山 ハワイ
セミナー名:Tea Talk
定例・臨時の別:臨時
日時:12/6(水)11:00~12:00
場所:Zoom
Speaker: Séamus Duffy, Research Student, SOKENDAI
Title: Science Outreach in Ireland: Science Education at Birr Castle with I-LOFAR
Abstract: This tea-talk will talk a little bit about Ireland, and also about outreach there, broaching topics such as: who we target, how we target them, what activities and projects do we run, and adapting to Covid and a post-Covid world.

Bio: Séamus Duffy is a current research student at NAOJ working with the SCExAO team, focusing on applications of machine learning and AI to astronomy.
He originally came to Japan in 2017 and worked as an English teacher in Tokyo, where he stayed for four years before returning to Ireland in 2020. In Ireland he worked with the Technological University of the Shannon, Trinity College Dublin, and Dublin Institute for Advanced Studies as the education and engagement manager for the I-LOFAR project at Birr Castle, home of the Leviathan telescope. I-LOFAR is the Irish installation in the low frequency array, a radio telescope network which cover most of the European continent. He has a huge passion for teaching, outreach and inspiring younger minds to get involved with astronomy. During his time in outreach he worked to educate about I-LOFAR and the science being conducted at the telescope to the local population of Birr, local schools, businesses, and government officials. He was particularly interested in conducting outreach in a post-covid environment and utilising online and digital spaces for outreach programmes.

世話人の連絡先:
-名前:藤田登起子

=============== December  6 wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Dec. 6 (Wed.), 15:30-16:30
Place: the large seminar room / Zoom (hybrid)

Speaker: Moka Nishigaki
Affiliation: NAOJ (D1)
Title: Uncovering the Chemical Evolution of Galaxies from z=0–5 using the UniverseMachine
Abstract:
Cosmic baryon cycling is pivotal to galaxy evolution, and the amount of metals present in galaxies’ ISMs provides a key window into the gas cycling process. Recent JWST metallicity measurements and constraints on galaxy ISM masses have made it possible to recover the chemical evolution history of galaxies. In this talk, I present a novel empirical model that infers the average metallicity evolution of galaxies from redshift z=5 to z=0. Anchored in the UniverseMachine
(Behroozi+19) framework, our model converts observations of gas-phase metallicities across z=0—5 and galaxy ISM masses into constraints on the ISM return fraction, a key parameter quantifying the recycling of metals into the ISM versus expulsion into the CGM. I will show the initial results on how the ISM return fraction changes with mass and redshift.

Speaker: Xingqun Yao
Affiliation: Beihang University
Title: Neutrino Mass Hierarchy from Supernova Nucleosynthesis of Light Elements and the Roles of Unstable Nuclei
Abstract:
The origin of neutrino mass and mass hierarchy is one of the biggest unanswered questions in physics. In this talk I propose an astrophysical method so that the supernova (SN) ν-process nucleosynthesis, which is consistent with the mass hierarchy constrained from various ν-oscillation experiments, should provide independent observational signals of nucleosynthetic products in the specific nuclei such as 138La, 19F, 7Li, 11B and others (so-called ν nuclei) through the ν-flavor oscillation due to the MSW matter effect and the effect of collective oscillation [1].
Core-collapse SNe emits a huge number of neutrinos which bring valuable observational information on how the neutrinos propagate through the high-density matter and change their flavors and how explosive nucleosynthesis occurs. We found that the still unknown mass hierarchy is imprinted in the nucleosynthetic products of ν-nuclei [1,2]. In this talk, I will discuss the mechanism of SN ν-process nucleosynthesis and try to constrain the mass hierarchy by comparing our theoretical prediction of nuclear abundances and observed values in the meteorites and spectrascopy study. Among the calculated results, the abundance ratios of 11B/138La and 19F/16Oprovide exclusively sensitive probes to neutrino mass hierarchy [1]. These ratios are also influenced by the mass cut during the ejection phase of SN materials. These facts provide valuable quantitative tools to constrain the mass hierarchy through precise measurements of nuclear abundances of these ν-nuclei in SiC-X pre-solar grains and comprehensive studies of solar-system abundances.

Facilitator
-Name: Haruka Kusakabe
Comment: English

=============== December  8 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:December 8, 2023 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Prof. Cecilia Lunardini
Affiliation:Arizona State University

Title:Neutrinos and gravity: multimessenger scenarios
Abstract:Multimessenger astronomy is developing rapidly, and neutrinos are major players in its vast landscape. It is hoped that, in the near future, experimental and theoretical developments will lead to the detection of neutrinos and gravitational waves from the same class of source. I discuss possible scenarios, involving neutrinos and gravitational waves from core collapse supernovae, and from binary mergers of matter-rich compact objects (for example, two neutron stars). I will also discuss tidal disruption events, where a star is torn apart and eventually accreted by a supermassive black hole. These events, which produce flares at infrared, optical and X-ray wavelengths, are sources of sub-Hz gravitational waves, and could emit very high energy neutrinos and cosmic rays. Emphasis will be placed on the feasibility and physics potential of future observations of neutrinos and other messengers from these diverse classes of emitters.

Facilitator
-Name:Shinobu Ozaki

2023.11.27-2023.12.3

November 28 Tue 10:00-11:30 太陽系小天体セミナー zoom              


November 29 Wed 10:00-12:00 SOKENDAI Colloquium Large Seminar Room in Subaru Building and Zoom (hybrid)


November 29 Wed 15:30-16:30 NAOJ Science Colloquium Large Seminar Room in Subaru Building and Zoom (hybrid)


詳細は下記からご覧ください。

=============== November  28 Tue ===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例

日時:11月28日(火曜日)10時00分~11時30分
場所:zoom
講演者:土屋智恵

世話人の連絡先
 名前:渡部潤一
 
備考:テレビ会議またはスカイプによる参加も可

=============== November  29 Wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:November 29, 2023 10:00-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker: Seiya Imai
Affiliation: SOKENDAI 1st year (M1) (Supervisor: Masayuki Tanaka, Yusei Koyama, Kiyoto Yabe)
Title: Search for extreme emission line galaxies at 1<z<3 using Subaru/Hsc

Speaker: Rikuto Omae
Affiliation: SOKENDAI 55h year (D3) (Supervisor: Mami Machida, Masami Ouchi, Kazuhiro Hada)
Title: Probing the Magnetic Fields of Distant Galaxies to Unravel the Evolution of Galactic Magnetic Fields

Speaker: Yuta Tashima
Affiliation: SOKENDAI 5th year (D3) (Supervisor: Mami Machida, Fumitaka Nakamura, Tomoya Takiwaki)
Title: Elucidation of Galactic Magnetic Field Structure by Pseudo-Observation Focusing on Depolarization

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== November 29 Wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Nov. 29 (Wed.), 15:30-16:30
Place: the large seminar room / Zoom (hybrid)

Speaker: Yoko Oya
Affiliation: Kyoto University
Title: Physical Structures Traced by Chemical Diagnostics in Disk-Forming Regions of Young Low-Mass Protostellar Sources
Abstract:
To understand the origin of the Solar system, the physical/chemical evolution along the star/planet formation is a key issue. With the advent of ALMA, extensive observational studies have revealed that both the physical structure and the chemical composition drastically change during the disk formation around protostars. Furthermore, it has been found that molecular distributions are sensitive to changes in the physical conditions. Some kinds of molecular lines are therefore prospected to work as ‘molecular markers’ to selectively highlight particular structures of disk forming regions.
Specifically, sulfur-bearing species have empirically been good tracers; the kinematic structures of the circummultiple structure, the circumstellar disk, and the outflow lobes are traced by the OCS, H2CS, and SO emission, respectively, in a young low-mass protostellar source IRAS 16293-2422 Source A. The gas in its circummultiple structure was found to keep falling toward its periastron even beyond its centrifugal radius, which is often assumed to be the outer edge of a Keplerian disk.
Angular momentum of the gas is the essential topic to understand the structure formation. The chemical diagnostics with the aid of the molecular markers can be a helpful tool to tackle with the redistribution of the angular momentum among the disk/envelope and outflow structures. Conversely, detailed physical characterization is essential to elucidating the chemical evolution occurring there.

Facilitator
-Name: Masamitsu Mori

Comment: English

2023.11.20~2023.11.26

November  21 Tue 10:00-11:30 太陽系小天体セミナー zoom              


November  21 Tue 14:30-15:30 ALMA-J seminar Seminar room in the Subaru building (院生セミナー室) / Zoom (hybrid)


November 22 Wed 10:30-12:00 SOKENDAI Colloquium Large Seminar Room in Subaru Building and Zoom


November 22 Wed 15:30-16:30 NAOJ Science Colloquium the large seminar room / Zoom (hybrid)


November 24 Fri 16:00-17:00 NAOJ Seminar Zoom/Large Seminar Room(hybrid)

詳細は下記からご覧ください。

=============== November  21 Tue ===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:11月21日(火曜日)10時00分~11時30分
場所:zoom
講演者:大島修(岡山理科大学)・藤井貢(藤井黒崎観測所)
タイトル:イオ周辺の中性ナトリウム雲の活動
Abstract:木星の衛星イオに関連したナトリウム雲の非常に活発な活動を観測したので報告する。藤井は、今年10月始めから口径13cm屈折望遠鏡にNaI D1
D2狭帯域フィルター(半値幅2.3nm)をかけて、木星の衛星イオの周辺を撮像観測している。イオからのナトリウム雲は、当初、軌道平面とは角度を持った方向へ噴出したものが、その後軌道平面方向に広がり、一部にねじれを持ったりしながら拡散しているように見える。一体どのような現象を見ているのか議論に供したい。

世話人の連絡先
 名前:渡部潤一

備考:テレビ会議またはスカイプによる参加も可

=============== November  21 Tue===============

Campus: Mitaka
Seminar: ALMA-J seminar
Date and time: Nov 21 (Tue) 14:30-15:30
Place: Seminar room in the Subaru building (院生セミナー室) / Zoom (hybrid)
Speaker: Amanda Kepley (NRAO)

Title: Next Steps Towards Understanding Star Formation: Mapping Dense Gas in Nearby Galaxies
Abstract:
From both a theoretical and an observational perspective, dense gas plays an important role in star formation. Almost all theories of star formation have gas density as a key variable, while observations in the Milky Way and nearby galaxies suggest a close link between dense gas and star formation. Early unresolved observations of nearby galaxies suggested a simple relationship between the amount of dense gas and the amount of star formation in a galaxy. Recent resolved surveys of dense molecular gas in nearby galaxies, however, have shown that the dense gas fraction and the dense gas star formation efficiency ? ratio of the star formation rate to amount of dense gas ? varies within individual galaxies and among different galaxies. Unfortunately, the faintness of the primary dense gas tracers (HCN and HCO+) mean that these studies have been limited to small (5-10) samples of normal galaxies. In this talk, I will discuss recent observations that push the dense molecular gas observations in new directions. First, I will describe recent detections of dense molecular gas in the Local Group Dwarf starburst IC 10. Second, I will present early results from the Dense Extralactic GBT+Argus Survey (DEGAS). The goal of this survey is to map the dense molecular gas in the central 2arcmin of 36 nearby galaxies at moderate (10arcsec) resolution. I will conclude with thoughts on how a large mm cameras on single dish telescopes and more sensitive interferometers could further advance this important science.

Organizers: Gianni Cataldi, Hiroshi Nagai

=============== November 22 Wed==============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Regular
Date and time:November 22, 2023 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker: Shotaro Tada
Affiliation: SOKENDAI 4th year (D2) (Supervisor: Takayuki Kotani, Yutaka Hayano, Yosuke Minowa)
Title: InGaAs Detector Testing for JASMINE: Efforts to Minimize Readout Noise & Dark Current Measurement

Speaker: Ko Hosokawa
Affiliation: SOKENDAI 45h year (D3) (Supervisor: Takayuki Kotani, Yosuke Minowa, Yuka Fujii)
Title: Spectral Line Profile Measurement for Investigating Gas-giant Atmospheres

Facilitator
-Name:Matsuda, Graduate Student Affairs Unit

=============== November 22 Wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Nov. 22 (Wed.), 15:30-16:30
Place: the large seminar room / Zoom (hybrid)

Speaker: Jihye Hwang
Affiliation: KASI
Title: The distribution of magnetic field strengths in star-forming regions
Abstract:
“What is the role of magnetic fields for regulating star-forming processes?” It is a long- standing issue in star formation studies. To judge the exact role of magnetic fields in star-forming regions, it is necessary to estimate the magnetic field strengths of those regions.
However, previous studies have estimated a mean magnetic field strength in a whole star-forming region. I suggest a new application to estimate the distribution of magnetic field strengths in a star-forming region. I applied this towards three star-forming regions, the OMC-1 region, Mon
R2 and G28.34 using POL-2/SCUBA-2 on the James Clerk Maxwell Telescope.
In this talk, I will show the magnetic field strengths in those regions and discuss the relative importance between magnetic field, turbulence and gravity.

Facilitator
-Name: Doris Arzoumanian
Comment: English

=============== November 24 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:November 24, 2023 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Prof,Aya Ishihara
Affiliation:Chiba University

Title:ニュートリノを基軸とした宇宙のマルチメッセンジャー観測
Abstract:
高エネルギー宇宙ニュートリノは、宇宙のどこかで加速されている超高エネルギー宇宙線が天体内外の光や物質と相互作用することで生成される荷電パイオンの崩壊によって作られる。
同時につくられる中性パイオンの崩壊からはガンマ線が出るので、ニュートリノ天文学と言う時は通常光を使った観測と組み合わせ、マルチメッセンジャー天文学として統合的な宇宙理解を目指す。
特に、ニュートリノは天体内外の加速の現場からの情報を直接伝えてくれるので、粒子加速モデルの鍵となる情報をもたらすことが期待されている。また、ニュートリノのマルチメッセンジャー観測は、ダークマターや標準模型を超える物理に迫る観測をも可能とする。
このような高エネルギー宇宙ニュートリノの観測目指し南極点に建設されたのが世界初となる一立方キロメートルの容量を持つIceCubeニュートリノ望遠鏡だ。本講演ではIceCubeの完成から約10年で得られた成果を紹介し、その成果を踏まえた将来展望について議論する。

Facilitator
-Name:Okamoto, Takenori