2024.5.13-2024.5.19


May 14 Tue 10:00-11:30
太陽系小天体セミナー (Solar System Minor Body Seminar)
Zoom


May 14 Tue 13:00-13:40
SOKENDAI Doctoral Thesis Preliminary Evaluation
総研大博士学位論文予備審査会
hybrid; Large Seminar Room in Subaru Building and Zoom


May 15 Wed 10:30-12:00
SOKENDAI Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


May 15 Wed 14:30-15:30
ALMA-J seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== May 14 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー (Solar System Minor Body Seminar)
定例・臨時の別:定例
日時: 5月 14日(火曜日)10時00分~11時30分
場所:zoom
講演者:佐藤幹哉
所属: 国立天文台 

世話人の連絡先
-名前:渡部潤一
備考:zoomでの参加

=============== May 14 Tue===============

Campus: Mitaka
Seminar: SOKENDAI Doctoral Thesis Preliminary Evaluation
     総研大博士学位論文予備審査会
Regularly Scheduled/Sporadic: Sporadic
Date and time: May 14, 2024 13:00-13:40
Place: Large Seminar Room and Zoom

Speaker: Kiyoaki Doi
Title: Constraining Physical Properties of Protoplanetary Disks from Spatial Distributions of Dust Millimeter Continuum Observations

Facilitator
-Name: Ken’ichi Tatematsu, Tomoya Hirota, Kazunari Iwasaki

(Graduate Student Affairs Unit)

===============May 15 Wed==============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Scheduled
Date and time:May 15, 2024 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker:Abdurrahman Naufal
Affiliation:SOKENDAI 4th year (D2) (Supervisor: Yusei Koyama, Masayuki Tanaka, Yuichi Matsuda)
Title:Deep census of the Spiderweb protocluster members with HST slitless spectroscopy observation

Facilitator
-Name:Yoshiaki Sato
Comment:Language: English

===============May 15 Wed==============

Campus: Mitaka
Seminar: ALMA-J seminar
Date and time: 2024 May. 15 (Wed.), 14:30-15:30 JST
Place: Subaru building, Large seminar room / Zoom (hybrid)

Speaker: Kshitiz Mallick
Affiliation: NAOJ
Title: Observational study of high-mass star formation at the junction of filaments
Abstract:
Understanding high-mass star formation is an important pillar of astronomical research, due to the large impact of such sources on their natal environment.
Various paradigms have been proposed for the formation of such stellar sources, with hub filament systems (HFS) having emerged as an important contender for understanding not only how massive stars form, but also the evolution of a molecular cloud as it collapses and fragments to form stars. In this talk, I present the results of my recent observational analysis of some high-mass star forming regions, carried out using molecular data cubes, complemented by other multiwavelength data. We discuss the complex nature of such star forming regions, the conundrums faced in analysis of hubs and filamentary structures, and the further work one needs to undertake to fully comprehend the connection between(high-mass) star formation and HFS.

Facilitator
-Name: Yu Cheng

2024.5.6-2024.5.12


May 7 Tue 10:00-11:30
太陽系小天体セミナー (Solar System Minor Body Seminar)
Zoom


May 8 Wed 10:30-12:00
SOKENDAI Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


May 8 Wed 15:30-16:30
NAOJ Science Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


May 10 Fri 15:30-16:30
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== May 7 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー (Solar System Minor Body Seminar)
定例・臨時の別:定例
日時: 5月 7日(火曜日)10時00分~11時30分
場所:zoom
講演者:秋澤宏樹

世話人の連絡先
-名前:渡部潤一
備考:zoomでの参加

=============== May 8 Wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Scheduled
Date and time:May 8, 2024 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker:Ryota Ichimura
Affiliation:SOKENDAI 4th year (D2) (Supervisor: Hideko Nomura, Akimasa Kataoka, Nanase Harada)
Title:The impact of Cosmic Rays on Carbon Isotope Fractionation of COMs in Star-Forming Cores

Speaker:Ryota Ikeda
Affiliation: SOKENDAI 4th year (D2) (Supervisor: Daisuke Iono, Masayuki Tanaka, Takuma Izumi)
Title:Resolving Luminous Submillimeter Galaxies

Facilitator
-Name:Yoshiaki Sato
Comment:Language: English

===============May 8 Wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 May 8 (Wed.), 15:30-16:30 JST
Place: the large seminar room / Zoom (hybrid)

Speaker: Yukun Huang
Affiliation: CfCA, Division of Science
Title: A Rogue Planet Hypothesis for the Formation of the Trans-Neptunian Solar System – 太陽系外縁の形成におけるローグ惑星仮説 –
Abstract:
Over the past two decades, our knowledge of the Solar System’s Trans-Neptunian region (often called the Kuiper Belt) has been gradually increasing. Observational surveys have greatly expanded the inventory of Trans-Neptunian Objects (TNOs), which are distant icy bodies thought to be relics from the giant planet formation era. In the distant Kuiper Belt beyond 50~au, several striking features seem to challenge our previous understanding of the early Solar System: 1) a very large population of objects in distant mean-motion resonances with Neptune, 2) a substantial detached population that are not dynamically coupled with Neptune’s effects, and 3) the existence of three very-large perihelion objects, known as Sednoids. I will demonstrate in this talk, that a super-Earth-mass planet temporarily present in the Solar System (referred to as a ‘Rogue Planet’), is able to create all these structures in the distant Kuiper Belt. Such a planet would have formed in the giant planet region and gotten scattered to a highly-eccentric orbit with a few hundred au semimajor axis with a typical lifetime of
100 Myr. Additionally, when examining the past history of the three Sednoids, I surprisingly find that all their apsidal lines were tightly clustered at 200° exactly 4.5 Gyr ago. This “primordial orbital alignment”, if confirmed true, strongly argues for an initial event that imprinted this particular apsidal orientation on early detached TNO population, and the rogue planet model could potentially explain this new phenomenon.

Facilitator
-Name: Masamitsu Mori
Comment: English

===============May 10 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:May 10 Fri, 2024 15:30-16:30
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Dr. Athira Menon
Affiliation:Institute of Astrophysics of the Canary Islands

Title:Towards solving an old stellar puzzle: the origin(s) and fate(s) of blue supergiants

Abstract: The origin and fate of observed B-type blue supergiants (BSGs), has been a long-standing puzzle in stellar astrophysics. The majority of these stars are observed to be single (with no detectable companion), and populate the end of the main sequence (MS) and the Hertzsprung gap on the HR diagram. However, models of stars that are born alone, have found limited success in simultaneously explaining the measured physical and chemical properties of BSGs, thereby indicating that a different evolutionary channel may dominate their creation. In this talk, I will present novel models of stars that are born from the mergers of binaries containing giant stars and MS companions. To compare our models, we newly analysed a large sample of early B-type supergiants in the Large Magellanic Cloud (LMC) and derived their surface properties. Unlike classical single-star models, merger-born stars sustain their BSG status throughout their core He-burning phase and quite easily populate the traditional Hertzsprung gap. We find that the largest group of the observed sample are likely only born from mergers, a smaller second group may contain both born-alone stars and merger-born stars and the minority are likely MS single stars. Although supernova SN 1987A is the most famous explosion of a BSG, the rate of 87A-like events is lower than the observed number of BSGs. I will close the talk with possibilities of other transients and remnants that may be the final outcomes of the deaths of BSGs.

Facilitator
-Name:Takuma Izumi

2024.4.29-2024.5.5


April 30 Tue 10:00-11:30
太陽系小天体セミナー (Solar System Minor Body Seminar)
Zoom


詳細は下記からご覧ください。

=============== April 30 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー (Solar System Minor Body Seminar)
定例・臨時の別:定例
日時: 4月 30日(火曜日)10時00分~11時30分
場所:zoom
講演者:藤井大地
所属: 平塚市博物館

世話人の連絡先
-名前:渡部潤一
備考:zoomでの参加

2024.4.22-2024.4.28


April 24 Wed 10:30-12:00
SOKENDAI Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 24 Wed 15:30-16:30
NAOJ Science Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 26 Fri 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== April 24 Wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Scheduled
Date and time:April 24, 2024 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker:Shun Hatano
Affiliation:SOKENDAI 3rd year (D1) (Supervisor: Masami Ouchi, Takashi Moriya, Yusei Koyama)
Title:Near-infrared Variability of Ultra/luminous Infrared Galaxies
Speaker:Itsuki Ogami
Affiliation:SOKENDAI 5rd year (D3) (Supervisor: Wako Aoki, Hisanori Furusawa, Miho N. Ishigaki)
Title:The Nature of the Stellar Halo in the Triangulum Galaxy

Facilitator
-Name:Yoshihiro Naito

Comment:Language: English

=============== April 24 Wed===============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2024 Apr. 24 (Wed.), 15:30-16:30 JST
Place: the large seminar room / Zoom (hybrid)

Speaker: Qiliang Fang
Affiliation: NAOJ (JSPS fellow)
Title: Inferring the evolution pathways and the explosion mechanism of core-collapse supernova through late-phase spectroscopy
Abstract:
Core-collapse supernovae (CCSNe) are considered as the final explosions of massive stars, following the depletion of the nuclear products in their cores. These catastrophe events are diverse in observation especially the chemical composition in the expelled material (ejecta), which implies varied mass-loss histories preceding the explosion. Despite over a century of discoveries, the mechanism responsible for the diversity in CCSNe, and its potential connection with the still-unresolved core-collapse process, is still a topic of active debate. In this talk, I will introduce the application of late-phase (nebular) spectroscopy of CCSNe to reveal these longstanding mysteries. Beginning with the fundamental concepts of CCSNe, I will provide an overview of the physical quantities that can be inferred from nebular spectroscopy. Next, I will demonstrate how the statistics analysis of nebular spectroscopy can be employed to constrain the properties of the progenitor, the dynamics of the ejecta, and their mutual relations. This investigation suggests massive stars leads to more aspheric and energetic explosions. Finally, I will introduce my future research plan, which aims to connect the diverse pre-SN activities discovered by recent transient surveys with the properties of their progenitors.

Facilitator
-Name: Hiroki Nagakura

Comment: English

===============April 26 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:April 26 Fri, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Dr. Athira Menon
Affiliation:Institute of Astrophysics of the Canary Islands

Title:Towards solving an old stellar puzzle: the origin(s) and fate(s) of blue supergiants

Abstract: The origin and fate of observed B-type blue supergiants (BSGs), has been a long-standing puzzle in stellar astrophysics. The majority of these stars are observed to be single (with no detectable companion), and populate the end of the main sequence (MS) and the Hertzsprung gap on the HR diagram. However, models of stars that are born alone, have found limited success in simultaneously explaining the measured physical and chemical properties of BSGs, thereby indicating that a different evolutionary channel may dominate their creation. In this talk, I will present novel models of stars that are born from the mergers of binaries containing giant stars and MS companions. To compare our models, we newly analysed a large sample of early B-type supergiants in the Large Magellanic Cloud (LMC) and derived their surface properties. Unlike classical single-star models, merger-born stars sustain their BSG status throughout their core He-burning phase and quite easily populate the traditional Hertzsprung gap. We find that the largest group of the observed sample are likely only born from mergers, a smaller second group may contain both born-alone stars and merger-born stars and the minority are likely MS single stars. Although supernova SN 1987A is the most famous explosion of a BSG, the rate of 87A-like events is lower than the observed number of BSGs. I will close the talk with possibilities of other transients and remnants that may be the final outcomes of the deaths of BSGs.

Facilitator
-Name:Joten Okamoto

2024.4.15-2024.4.21


April 16 Tue 10:00-11:30
太陽系小天体セミナー (Solar System Minor Body Seminar)
Zoom


April 17 Wed 14:30-15:30
ALMA-J seminar
hybrid; Room102 in ALMA Building and Zoom


April 17 Wed 15:30-16:30
NAOJ Science Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 18 Thu 15:00-16:30
Solar and Space Plasma Seminar
hybrid; Insei Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== April 16 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー (Solar System Minor Body Seminar)
定例・臨時の別:定例
日時: 4月 16日(火曜日)10時00分~11時30分
場所:zoom
講演者:野上長俊
タイトル:永続痕の発光原理について

世話人の連絡先
-名前:渡部潤一

備考:zoomでの参加

=============== April 17 Wed===============

Campus: Mitaka
Seminar: ALMA-J seminar
Date and time: 2023 Apr. 17 (Wed.), 14:30-15:30 JST
Place: ALMA building, room 102 / Zoom (hybrid)

Speaker: Yao-Lun Yang
Affiliation: RIKEN
Title: Origin of Complex Molecules in Embedded Protostars
Abstract:
Chemical evolution in prestellar and protostellar phases not only determines the initial chemical composition of protostellar disks but also provides a laboratory to study the fundamentals of interstellar chemistry. In recent years, common detection of gas-phase complex organic molecules (COMs) suggests extensive chemical reactions already taken place in the early phase of star formation. However, while some protostars have abundant gas-phase COMs, many protostars still show no sign of COM emission. This contrast of their gas-phase chemical signatures begs the question: Does the diverse gas-phase chemistry represent distinctively different chemical evolution? and what processes govern the chemical evolution in the early phase of star formation? Ice not only represents the more pristine chemistry with minimum contamination from gas-phase reactions but also enables major formation pathways of COMs. While ALMA provides sub-100 au resolution, a resolution necessary to resolve sites of planet formation, to characterize gaseous COMs in nearby embedded protostars, measurements of chemical composition in ices had been limited by low-resolution and limited sensitivity spectroscopy until JWST. Thus, it is imperative to probe both gas and ice chemistry related to COMs, which can only be achieved with both ALMA and JWST. In this talk, I will highlight the latest JWST results of ice chemistry and the characterization of complex ice species in comparison with that detected in gas-phase by ALMA. Particularly, I will present the latest results from the CORINOS program, which aims to delineate the origin of COM diversity in gas-phase. We detect likely features of icy COMs regardless of the presence of gaseous COMs. If these signatures indeed represent icy COMs, we would get similar abundance in ice- and gas-phase. We suggest that these sources have a similar ice chemistry and the apparent deficiency of gaseous COMs is due to inefficient desorption processes. Whereas JWST provides extremely sensitive spectra, interpretations of ice absorption features still face several challenges. The absorption features are intrinsically blended and isolating each species is not trivial. Furthermore, spectra of embedded protostars suffer from substantial extinction by dust and ice, which hinders straightforward measurements of absorption. I will also discuss the approaches we took to mitigate these challenges as well as the limitations.

Facilitator
-Name: Pei-Ying Hsieh

===============April 17 Wed==============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Apr. 17 (Wed.), 15:30-16:30 JST
Place: the large seminar room / Zoom (hybrid)

Speaker: Haibin Zhang
Affiliation: Division of Science, NAOJ
Title: Circumgalactic Medium and Large Scale Structure at z=2 Traced by Lya Emission
Abstract:
In current pictures of galaxy formation and evolution, galaxies are closely related to their surrounding circumgalactic medium (CGM) and large scale structure (LSS). To investigate the CGM and LSS at high-z, I will introduce our “MAMMOTH-Subaru” paper series that study ~3300 Lyα emitters (LAEs) and ~120 Lyα blobs (LABs; luminous and massive LAEs) at
z=2 selected with Subaru/HSC data. Our main results are: 1. We stack our LAEs to identify the faint Lyα emission in CGM (Lyα halo; LAH). Our LAH is detected till ~100 kpc at the 2σ level and likely extended to ~200 kpc. We show that more massive LAEs generally have more extended
(flatter) LAHs. 2. We find that most (~70%) LABs locate in overdense environments. A unique protocluster region (~40*20 cMpc^2) contains 12 LABs, showing an extremely high LAB number density (>2 times higher than the SSA22 field). We calculate the angular correlation functions of LAEs and LABs, and suggest that LABs are more clustered and likely reside in more massive dark matter halos than LAEs. 3. We calculate the Lyα luminosity function at z=2 and demonstrate an observational approach to measure the cosmic variance. We find that our measurements cannot be explained by previous simulations, and that LAEs likely have a larger cosmic variance than general star-forming galaxies.

Facilitator
-Name: Doris Arzoumanian

Comment: English

===============April 18 Thu==============

Campus: Mitaka
Seminar: Solar and Space Plasma Seminar
Regularly Scheduled/Sporadic: Sporadic
Date and time:18 April (Thu), 15:00-16:30
Place: Insei Seminar Room and Zoom

Speaker:Mr. Junya Natsume
Affiliation:Kyoto University (D1)
Title: Comparison of Spectra of Solar Magnetic Active Phenomena Using Multiple Chromospheric Lines Taken by DST at Hida Observatory

Abstract:

Solar active phenomena can be observed as spatially resolved images while stellar ones cannot. Recently, so-called “Sun-as-a-star analysis” has been conducted on solar active phenomena by spatial integration of solar observation data into data mimicking stellar observations. H-alpha (6563 angstroms) line has been often used for this analysis and analysis including other chromospheric lines will provide more detailed information on dynamics of stellar active phenomena than single line. For example, the simulated He I (10830 angstroms) line in flaring atmosphere with an electron beam produces much stronger emission and absorption than that without an electron beam (Ding et al. 2005). The absorption sensitivity of the He I line increases due to EUV radiation (Fontenla et al. 1993). Ca II K (3934 angstroms) line consists of three components, K1, K2 and K3, ordered from lower to higher formation heights, which exhibit profiles with wide absorption outside, emission inside of K1 and absorption inside of K2, respectively. We observed solar flare and filament activation which occurred at active region NOAA 13078 on 2022 August 19, taken by Domeless Solar Telescope (DST) at Hida Observatory of Kyoto University. Using Horizontal Spectrometer in DST, we obtained imaging spectroscopic data in four chromospheric lines, H-alpha, Ca II K, Ca II IR (8542 angstroms) and He I, simultaneously. The flare ribbons were confirmed in both wings of Ca II K and the line centers of H-alpha, Ca II K and Ca II IR lines while they were weak in He I line. The darkening of the filament activation was confirmed in both wings of H-alpha and He I lines and line centers of all the four lines. We performed Sun-as-a-star analyses on the data and compared spatially integrated spectra in the four lines. The H-alpha line showed brightening near the line center and darkenings in the red and blue wings, whereas the He I line only showed darkenings in both core and wings. On the other hand, the Ca II K line exhibited the darkening coming from the filament activation in the line center and the brightening coming from the flare ribbon in both wings. We also integrated the spectra in wavelength into equivalent width (EW). The EWs around flare peak time had brightening coming from flare ribbon in H-alpha, Ca II K and Ca II IR lines and started darkening 5-10 min after the peak in H-alpha and Ca II K lines coming from the filament activation. The time developments of EWs of H-alpha and Ca II K lines are similar. The EW of He I line started darkening around flare peak time without brightening. The difference between H-alpha and He I lines is caused by the weakness of flare brightening in He I line, which is considered to be contributed to EUV radiation or electron beam. The difference between H-alpha and Ca II K lines is explained by the broad width of K1,2 emission by the flare ribbon at lower altitude and the narrow width of K3 absorption by the filament at higher altitude. Even though the EWs of H-alpha and Ca II K lines are similar, the wavelength from line center of H-alpha and Ca II K had information of line-of-sight velocity and formation heights in this event, respectively.

Facilitator
-Name:Akiko Tei

Comment:Japanese (Slides will be in English)