【日時】6月29日(水) 10:30~12:00
【場所】国立天文台・三鷹 中央棟(北)1階 講義室
【発表者(敬称略)】大井渚(総研大 D3・ハワイ、指導教員 : 有本 信雄 & 今西 昌俊)
【タイトル】
Masses of Supermassive Black Holes in ULIRG estimated by effective radius
【アブストラクト】
活動銀河核(AGN)の中心部に存在する超巨大ブラックホール(SMBH)と毋銀河の性質(速度分散・光度・有効半径)には正の相関関係があることが観測的に分かっており、AGNと銀河が互いに影響を与えながら進化してきた(共進化)ことを示唆している。
しかしこの関係が、いつどのようにして出来たのかは未だ明らかになっていない。
超高光度赤外線銀河(ULIRG)は、 AGN の中で最も明るい (Lopt>10^12Lsun) クェーサー(QSO) と同程度のエネルギーを赤外線領域で放っている天体であり、QSO に匹敵するエネルギー源が塵に隠されて存在することを意味する。またULIRGは塵に富む銀河の合体末期に選択的に見つかっていることから、銀河が衝突合体することで銀河・SMBHの成長が共に促進され、ULIRGの段階後、QSO的AGNに進化するという理論がある。
一方で、ULIRGのエネルギー源は星生成であり、QSOとは無関係で、QSOには進化しないとする主張もあり、その状況は混沌としている。
我々はこの問題を解決すべく、ULIRGの中心に存在するだろうSMBHの質量(MBH)を見積もる。
ULIRGがQSOに進化するならば、ULIRGのMBHはQSOのものに匹敵するはずである。
ULIRGは中心に塵を大量に持つため、従来用いられている可視光を用いてガスの輝線幅からMBHを測ることが不可能であった。
そこで、我々はMBHと相関がある銀河の有効半径を塵の影響の少ない赤外線の撮像データからMBHを見積もる。
本講演では、南アフリカにあるのIRSF1.4-m望遠鏡で観測した50天体のULIRGに対して見積もったMBHとそこから示唆されるQSOとの進化関係について議論する。
「コロキウム」カテゴリーアーカイブ
Cosmic history of Core-collapse Supernovae and Supernova Relic Neutrinos(重力崩壊型超新星爆発にみる宇宙史と残存超新星起源ニュートリノ)
【日時】6月22日(水) 10:30~12:00
【場所】国立天文台・三鷹 中央棟(北)1階 講義室
【発表者(敬称略)】鈴木 重太朗(総研大 D3・三鷹、指導教員 : 梶野 敏貴)
【タイトル】Cosmic history of Core-collapse Supernovae and Supernova Relic Neutrinos(重力崩壊型超新星爆発にみる宇宙史と残存超新星起源ニュートリノ)
本研究は、超新星背景ニュートリノを観測手段として用い、その検出率を予測する際の理論的な仮定の妥当性を定量的に評価することにより、ニュートリノ振動パラメータ及び超新星爆発時のニュートリノ温度を従来より厳密に制限することを目的とする。また、大質量星形成の時間進化をより詳細に知ることを併せて目的とする。
重力崩壊型超新星爆発の際には、多量のニュートリノが発生して重力的束縛エネルギーのほとんどを運び去ると考えられているが、ニュートリノは他の物質との反応性が乏しいため、過去の超新星爆発の際に発生したニュートリノは背景ニュートリノ(以下、SRNと略記)として現在も宇宙空間を飛び交っていると考えられている。但し、そのエネルギースペクトルを精度よく予測するためにはいくつかの不定性が障害となる。
これらの不定性のうちの主なものは超新星爆発時のニュートリノ温度の不定性であり、また、これまであまり着目されていなかったfailedSN(爆発後にブラックホールを残す超新星爆発)やガンマ線バースト(GRB)及びO-Ne-Mg核超新星爆発からの寄与についても検討の余地がある。
本研究では、SRNエネルギースペクトルを決定する各要素がどのような不定性をどの程度有するか、及びそれらを減ずる方法を紹介し、これを踏まえて現在計画中の106 t級水チェレンコフ型検出装置において得られるエネルギースペクトルを予測する。そして、さらにこれを踏まえて、ニュートリノ振動パラメータ及び超新星ニュートリノ温度へ制限を加えうる可能性を議論する。
活動銀河ジェットM87における超高エネルギーγ線フレア領域のVLBI観測
【日時】6月8日(水) 10:30~12:00
【場所】国立天文台・三鷹 中央棟(北)1階 講義室
【発表者(敬称略)】秦 和弘(総研大 D3・三鷹、指導教員 : 川口 則幸)
【タイトル】活動銀河ジェットM87における超高エネルギーγ線フレア領域のVLBI観測
アブストラクト
活動銀河中心核(AGN)に付随する相対論的ジェットではしばしば電波~X線に渡り強い非熱的放射が観測される。このうち幾つかのAGNジェットではテラ電子ボルト(TeV)に至る超高エネルギー(Very-High-Energy:VHE)γ線が観測されており、相対論的ジェットが卓越した粒子加速の現場となっていることを示唆している。
しかしながらジェットのどこで、如何にしてこれらの現象がもたらされるのか、その詳細は未だ明らかでなく、宇宙物理学における重要課題の1つとして残されている。
この問題に切り込む有力なアプローチは、VHE観測と同期して高分解能VLBI観測を行うことである。
おとめ座銀河団の中心部に位置する電波銀河M87は最近傍のVHEγ線源である。
その近さゆえジェットが他のγ線AGNに比べ圧倒的な空間スケールで分解されており、γ線放射の起源を紐解く上で鍵となる天体である。
これまで2005年、2008年に大規模なVHEフレアが観測されており、フレアに同期して行われたVLBI観測はγ線放射領域の特定および物理状態に極めて重要な制限を与えている。
2010年4月、M87で再び大規模なVHEγ線フレアが報告された。
我々はこのフレアとほぼ完全に同期してVLBAによる高分解能観測に成功した。
そこで今回は2010年VHEフレア時のVLBIスケールの様子について報告し、本観測から示唆されるフレアの発生場所、物理状態等について議論する。
Behavior of Blue Straggler Stars in Dwarf Spheroidal Galaxies
【日時】6月1日(水) 10:30~12:00
【場所】国立天文台・三鷹 中央棟(北)1階 講義室
【発表者(敬称略)】Zhao Zhengshi(総研大 D2・三鷹、指導教員 : 有本 信雄)
【タイトル】Behavior of Blue Straggler Stars in Dwarf Spheroidal Galaxies
Blue straggler stars (BSSs) are located above and blue-ward of main sequence turn off (MSTO) in color-magnitude diagram (CMD) of stellar systems. They have been identified in many stellar systems during past 60 years, since discovered by Sandage (1953) in globular cluster (GC) M3. The locations of BSSs imply that they are more massive than MSTO stars if they are normal single stars, and considering all stars in a cluster had formed at the same time, according to standard theory of stellar evolution, BSSs should have evolved to white dwarfs long ago.
However, they appear along the MS and lazy to evolve as other stars in the same cluster. Two different mechanisms of them are commonly believed nowadays: mass transfer in binary systems and stellar merger occurred through a direct stellar collision. The former might be dominant in lower density environments, whereas the later might be considered to mainly occur in high-density environments.
Relative frequency of bimodal distributions, concentrating in central regions and decreasing at intermediate radius and rising again in the outskirts, are a characteristic phenomenon of BSSs in GCs. Dynamical simulation of Mapelli et al (2004) showed that these distributions can be reproduced by requiring the central BSSs formed mainly by CL
mechanism, and the outskirt BSSs formed by MT mechanism. On the contrary, radial distributions of BSSs in three dSphs Draco, Ursa Minor and Sculptor, shows quite flat distribution and that are consistent with model predictions for BSS formation by MT mechanism (Mapelli et al 2007 & 2009). However, in dwarf galaxies both of young
MSs and old BSSs are located on the blue ward of current MSTO. Momany et al. (2007) derived a statistically significant anti-correlation between BSSs’ relative frequency and absolute magnitude of dSphs which had been found in GCs and OCs, and mentioned that the anti-correlation can be used as a discriminator: galaxies obeying the anti-correlation are more likely to possess genuine primordial BSS rather than young
main sequence stars.In view of small range of luminosity of their samples (-10
Exploring galaxy clusters using weak lensing and spectroscopic redshift
【日時】5月25日(水) 10:30~12:00
【場所】国立天文台・三鷹 中央棟(北)1階 講義室
【発表者(敬称略)】内海 洋輔(総研大 D3・三鷹、指導教員 : 宮崎 聡)
【タイトル】Exploring galaxy clusters using weak lensing and spectroscopic redshift
銀河団は重力的に束縛した宇宙最大の系であり.その質量の殆どはダークマターで占められている.
銀河団の進化は自己重力と宇宙膨張のせめぎ合いで決まるので,銀河団の個数や質量関数,その進化を調べることで,宇宙論パラメータを決めることができる.
こうした研究をすすめるためには,まず銀河団カタログを構築しなければならない.
我々は弱重力レンズによる検出法を採用した.この手法は質量を直接トレースできるので,複雑な物理過程を仮定することなく銀河団を検出できるのが特徴である.一方で,視線方向に重なった構造をすべて積分した結果が観測されてしまうという欠点もある.
我々は弱重力レンズによる質量分布と分光観測結果を比べ,奥行き構造について調べた.今回はさらに質量分布の構築法を改善し,より銀河団らしく,よりノイズを落とすような “Optimal” フィルタを採用しテストした.その結果について報告し,将来的な HSC を使った弱重力レンズによる銀河団カタログ構築と,それを使った宇宙論パラメータの制限についての展望を述べる.
また今回の観測では偶然にも多数の $z=0.5$ の比較的赤方偏移の大きい銀河団を発見した.本観測領域の特徴や銀河団プロファイルに対する観測的制限も行ったので合わせて報告する.