2024.4.22-2024.4.28


April 24 Wed 10:30-12:00
SOKENDAI Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 24 Wed 15:30-16:30
NAOJ Science Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 26 Fri 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== April 24 Wed===============

Campus:Mitaka
Seminar:SOKENDAI Colloquium
Regularly Scheduled/Sporadic:Scheduled
Date and time:April 24, 2024 10:30-12:00
Place:Large Seminar Room in Subaru Building and Zoom

Speaker:Shun Hatano
Affiliation:SOKENDAI 3rd year (D1) (Supervisor: Masami Ouchi, Takashi Moriya, Yusei Koyama)
Title:Near-infrared Variability of Ultra/luminous Infrared Galaxies
Speaker:Itsuki Ogami
Affiliation:SOKENDAI 5rd year (D3) (Supervisor: Wako Aoki, Hisanori Furusawa, Miho N. Ishigaki)
Title:The Nature of the Stellar Halo in the Triangulum Galaxy

Facilitator
-Name:Yoshihiro Naito

Comment:Language: English

=============== April 24 Wed===============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2024 Apr. 24 (Wed.), 15:30-16:30 JST
Place: the large seminar room / Zoom (hybrid)

Speaker: Qiliang Fang
Affiliation: NAOJ (JSPS fellow)
Title: Inferring the evolution pathways and the explosion mechanism of core-collapse supernova through late-phase spectroscopy
Abstract:
Core-collapse supernovae (CCSNe) are considered as the final explosions of massive stars, following the depletion of the nuclear products in their cores. These catastrophe events are diverse in observation especially the chemical composition in the expelled material (ejecta), which implies varied mass-loss histories preceding the explosion. Despite over a century of discoveries, the mechanism responsible for the diversity in CCSNe, and its potential connection with the still-unresolved core-collapse process, is still a topic of active debate. In this talk, I will introduce the application of late-phase (nebular) spectroscopy of CCSNe to reveal these longstanding mysteries. Beginning with the fundamental concepts of CCSNe, I will provide an overview of the physical quantities that can be inferred from nebular spectroscopy. Next, I will demonstrate how the statistics analysis of nebular spectroscopy can be employed to constrain the properties of the progenitor, the dynamics of the ejecta, and their mutual relations. This investigation suggests massive stars leads to more aspheric and energetic explosions. Finally, I will introduce my future research plan, which aims to connect the diverse pre-SN activities discovered by recent transient surveys with the properties of their progenitors.

Facilitator
-Name: Hiroki Nagakura

Comment: English

===============April 26 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:April 26 Fri, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Dr. Athira Menon
Affiliation:Institute of Astrophysics of the Canary Islands

Title:Towards solving an old stellar puzzle: the origin(s) and fate(s) of blue supergiants

Abstract: The origin and fate of observed B-type blue supergiants (BSGs), has been a long-standing puzzle in stellar astrophysics. The majority of these stars are observed to be single (with no detectable companion), and populate the end of the main sequence (MS) and the Hertzsprung gap on the HR diagram. However, models of stars that are born alone, have found limited success in simultaneously explaining the measured physical and chemical properties of BSGs, thereby indicating that a different evolutionary channel may dominate their creation. In this talk, I will present novel models of stars that are born from the mergers of binaries containing giant stars and MS companions. To compare our models, we newly analysed a large sample of early B-type supergiants in the Large Magellanic Cloud (LMC) and derived their surface properties. Unlike classical single-star models, merger-born stars sustain their BSG status throughout their core He-burning phase and quite easily populate the traditional Hertzsprung gap. We find that the largest group of the observed sample are likely only born from mergers, a smaller second group may contain both born-alone stars and merger-born stars and the minority are likely MS single stars. Although supernova SN 1987A is the most famous explosion of a BSG, the rate of 87A-like events is lower than the observed number of BSGs. I will close the talk with possibilities of other transients and remnants that may be the final outcomes of the deaths of BSGs.

Facilitator
-Name:Joten Okamoto

2024.4.8-2024.4.14


April 9 Tue 10:00-11:30
太陽系小天体セミナー (Solar System Minor Body Seminar)
Zoom


April 10 Wed 15:30-16:30
NAOJ Science Colloquium
hybrid; Large Seminar Room in Subaru Building and Zoom


April 11 Thu 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== April 9 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー (Solar System Minor Body Seminar)
定例・臨時の別:定例
日時: 4月 9日(火曜日) 10時00分 ~ 11時30分
場所:zoom
タイトル:ミーティング

世話人の連絡先
-名前:渡部潤一

備考:zoomでの参加

=============== April 10 Wed===============

Campus: Mitaka
Seminar: NAOJ Science Colloquium
Date and time: 2023 Apr. 10 (Wed.), 15:30-16:30 JST
Place: the large seminar room / Zoom (hybrid)

Speaker: Andris Dorozsmai
Affiliation: NAOJ
Title: Stellar triples with chemically homogeneously evolving inner binaries
Abstract:
Observations suggest that massive stellar triples are common. However, their evolution is not yet fully understood. In this talk, I discuss the evolution of hierarchical triples in which the stars of the inner binary experience chemically homogeneous evolution (CHE), particularly with the aim to explore the role of the tertiary star in the formation of gravitational-wave (GW) sources. To investigate these systems, I use the the triple-star population synthesis code TRES. I found that about 40 per cent of the all triples harboring a CHE inner binary (CHE triples) experience tertiary mass transfer episodes, an event which is rare for classically evolving stars (i.e. non-CHE stars). In the majority of tertiary mass transfer episodes, the accreting inner binary consists of two main sequence stars (58-60 per cent) or two black holes (24-40 per cent). I will also show that von Zeipel-Lidov-Kozai (ZLK) oscillations play an important role in the evolution of these systems. In particular, I find that for triples with initial outers pericentre smaller than 2000 solar radii, ZLK oscillations can result in eccentric (stellar or double compact object) mergers. Approximately 24 per cent of CHE triples become GW sources. Moreover, in a significant fraction of these sources, the tertiary star plays an important role and leads to configurations that are not predicted for isolated binaries. To conclude, the evolution of CHE binaries can be affected by a close tertiary companion, resulting in astronomical transients such as tertiary-driven massive stellar mergers and equal-mass BH-BH binaries that merge via gravitational-wave emission within Myrs.

Facilitator
-Name: Kanji Mori

Comment: English

===============April 11 Thu==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Sporadic
Date and time:April 11, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:中島 紀氏
Affiliation:元アストロバイオロジーセンター

Title:干渉計と褐色矮星と量子力学

Abstract: 私の研究生活の中で、4年以上かけた三つの研究対象について
お話しする。第一は、可視域の干渉計イメージングである。当時補償光学は存在せず、どうやって大型望遠鏡の回折限界のイメージイングを行うかは、一つの大きな問題であった。我々は、この問題を、電波の VLBI の手法を応用することで、解決した。
第二は、低温褐色矮星の探索と発見である。探索を始めた当時、褐色矮星は幻の天体であり、探索を行うこと自体に、懐疑的な意見もあった。我々が発見した褐色矮星には、メタンの吸収バンドがあり、それが 1000K 程度の天体であることを決定づけた。
第三は、量子力学の観測の問題である。光子や原子核といったミクロの存在の位置、といったミクロの情報が、我々の存在するマクロの世界の量として観測されるためには、どのようなプロセスを経なければならないか。この問題を現存する検出器の観点から明らかにした。

Facilitator
-Name:Joten Okamoto

2024.4.1-2024.4.7


April 5 Fri 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== April 5 Fri===============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:April 5, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Dr. Chervin Laporte
Affiliation:The Institute of Cosmos Science

Title:The stellar halo as a window on our Galaxy’s formation and dark matter

Abstract:The Galactic stellar halo consists of about 1-2% of the total stellar mass content of the Milky Way. Yet, it provides important clues on the formation of the Galaxy, properties of high redshift galaxies through the study of their resolved stellar populations as well as the nature of dark matter. In this talk, I will introduce the field of near-field cosmology and its goals. I will show how the Gaia mission has helped consolidate our understanding of the formation of the Milky Way but also the nature of dark matter and how numerical simulations are becoming an important tool to interpret observational data and the expected avalanche of data from upcoming spectroscopic/photometric surveys. I will then discuss some of the work we have carried out in our group on the stellar halo, covering the formation history of the Milky Way, interpretation of newly discovered substructures and the interaction of the LMC with the MW through the lens of numerical simulations.

Facilitator
-Name:Joten Okamoto

2024.3.18-2024.3.24

March 18 Mon 15:00-16:30
Solar and Space Plasma Seminar
hybrid; Insei Seminar Room in Subaru Building and Zoom


March 19 Tue 10:00-11:30
太陽系小天体セミナー
Zoom


March 22 Fri 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== March 18 Mon===============

Campus: Mitaka
Seminar: Solar and Space Plasma Seminar
Regularly Scheduled/Sporadic: Sporadic
Date and time:18 March (Mon), 15:00-16:30
Place: Insei Seminar Room and Zoom

Speaker:Mr. Takero Yoshihisa
Affiliation:Kyoto University (M2)
Title: One-dimensaional MHD simulation for prominence formation triggered by single heating event

Abstract:

I will review on the thermal non-equilibrium phenomena in the solar atmosphere, and present on my master thesis.
Plasma condensation phenomena in the corona, such as prominences and coronal rain, have been observed for many years. It is not clear whether current models can explain their formation process. In one of the proposed models that explain observational properties, the “evaporation condensation” model, a steady or quasi-steady heating at footpoints of a loop drives dense plasma evaporation into the corona and triggers the condensation.
However, it is natural to think of such steady or quasi-steady heating as the superposition of multiple heating events occurring between multiple magnetic field lines. When studying physical processes along a single magnetic field line, a single heating event should be considered as the basic unit.
We therefore investigate whether condensation occurs when the non-steady single heating event occurs at footpoints of a coronal loop. For this purpose, we set a dipped loop and solve 1.5-dimensional (one-dimensional three-vector components) magnetohydrodynamic equations, including radiative cooling, thermal conduction, gravity, and phenomenological turbulence heating. After reproducing the corona by energy input from imposed velocity perturbation at the footpoints, prominence formation is investigated by adding artificial transient localized heating. It is found that required amount of the heating per unit of time is ∼ 10^3 times larger than in steady cases. The amount of energy reaches nanoflare class. We also perform a parameter survey varying the magnitude of the localized heating rate to investigate the conditions for condensation by transient localized heating. The results show that with sufficiently strong heating, sufficient plasma is supplied to the corona to allow cooling to proceed and condensation to occur. It is essential that the loop temperature decreases and thermal conduction becomes inefficient with respect to cooling. Using the loop length L and the Field length λF, the condition for condensation is expressed as λF ≲L/2 under conditions where cooling exceeds heating.

Facilitator
-Name:Akiko Tei

Comment:Japanese (Slides will be in English)

=============== March 19 Tue===============

キャンパス:三鷹
セミナー名:太陽系小天体セミナー
定例・臨時の別:定例
日時:3月19日(火曜日)10時00分~11時30分
場所:zoom
講演者:大坪貴文

世話人の連絡先
 名前:渡部潤一
 
備考:テレビ会議またはスカイプによる参加も可

=============== March 22 Fri==============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:March 22, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Director General, Dr. Saku Tsuneta
Affiliation:National Astronomical Observatory of Japan

Title:素晴らしく面白かった太陽の研究
=40年の研究生活を振り返って=

Abstract: これまで約40年近く、大学院生や仲間の研究者の方々と、「ひのとり」の硬X線望遠鏡、「ようこう」の軟X線望遠鏡、「ひので」の可視光望遠鏡といった飛び道具に載せる望遠鏡の開発を行ってきました。翔体実験装置の開発をするには、教科書を読むだけでは不十分で、観測装置の構想から設計、製作、試験、打上げ前不具合の徹底追及、そして打上げ、飛翔結果を解析して初めて一人前になれます。衛星実験では規模が大きく開発期間も長いため、この過程を経験することが難しく、衛星実験の合間にロケット実験や気球実験も行ってきました。
談話会では、プロジェクトの立ち上げ方や進め方について自分の経験をもとに論じるのと同時に、国立天文台での6年間について所感を述べたいと思います。

Facilitator
-Name:Fumitaka Nakamura

2024.3.11-2024.3.17

March 15 Fri 14:00-15:00
Tea Talk
hybrid; Rinkoh Seminar Room and Zoom


March 15 Fri 16:00-17:00
NAOJ Seminar
hybrid; Large Seminar Room in Subaru Building and Zoom


詳細は下記からご覧ください。

=============== March 15 Fri ===============

キャンパス:三鷹 野辺山 水沢 岡山 ハワイ
セミナー名:Tea Talk
定例・臨時の別:臨時
日時:3/15(金)14:00~15:00
場所:Zoom+輪講室(ハイブリッド)
講演者:林 左絵子さん
所属: TMTプロジェクト
タイトル: エイリアンとのふれあいのススメ
言語:日本語

世話人の連絡先:
-名前:藤田登起子

備考:
参加方法:Zoom

=============== March 15 Fri ===============

Campus:Mitaka
Seminar:NAOJ Seminar
Regularly Scheduled/Sporadic:Regular
Date and time:March 15, 2024 16:00-17:00
Place:Zoom/Large Seminar Room (hybrid)

Speaker:Prof. Saeko Hayashi
Affiliation: National Astronomical Observatory of Japan (NAOJ)

Title:Seeking the Starlit Sky over the Moonbow
Abstract: “When you wish upon a star” sings a coqui frog where the stars filling the sky cast your shadow on the ground. That is where the Earth astronomers gather and strive to understand those stars seen and unseen. Each one of us with different background and skillsets can make a difference when working together to enhance such endeavor. As my last “talk story” at NAOJ, I would like to look back the changes the Japanese astronomy community has made and is going through. Naturally the emphasis is in the tools of the observations where I have had a fortune of hands-on experiences. And my parting word borrowed from the same song would be “anything your heart desires will come to you,” like how the way-finders of Hawai‘i say, even if the making of the segments for TMT is still underway.

Facilitator
-Name:Fumitaka Nakamura